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Figure 1. Segmentation of the octopus based on a sample of less than 2% of its triangles.

Abstract

In this paper we present Farthest Sampling Segmentation (FSS), a new method for the seg-
mentation of a triangulated surface with n faces into patches. The method is based on the
selection of a sample composed by k faces of the triangulation, with & < n. These faces
are chosen by farthest point sampling with respect to a given metric. Pairwise face distances
among the faces of the triangulation and the faces in the sample are used to compute an n X k
affinity matrix W*. Rows of W* encode the similarity among all triangles and the sample.
The segmentation is obtained by applying the clustering algorithm k-means++ to the rows of
W Several theoretical results that support the success of FSS are presented. We explain the
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relation between FSS and spectral segmentation methods. Moreover, it is shown that FSS is
coherent and stable. An extensive numerical experimentation is included, with several metrics
and a large variety of 3D triangular meshes. The quality of the segmentations is measured in
terms of Rand and Jaccard distances between FSS and ground-truth segmentations. The re-
sults show that always connected clusters are produced and that segmentations obtained when
k is less than 10% of n are as good as those obtained using the full affinity matrix. FSS has
several advantages. It does not depend on parameters to be tuned by hand and is very flexible,
since it can handle any metric. Moreover, it is a very cheap method, with a computational cost

of O(knm), where m is the cost to evaluate a metric between two faces of the triangulation.

1. Introduction

Mesh segmentation is an important ingredient of many geometric processing and
computer graphics tasks, such as shape matching, parametrization, mesh editing and
compression, texture mapping, morphing, multiresolution modeling, animation, and
3D printing. It explains why this subject has received a lot of attention in recent
years. In a review of mesh segmentation techniques, Shamir [2008] formulated the
segmentation problem as an optimization problem and considered two qualitatively
different types of segmentation: the part type, aiming to partition the surface into vol-
umetric parts, and the surface type, attempting to segment the surface into patches.
Segmentation techniques are also classified in correspondence with general cluster-
ing algorithms, such as region growing, hierarchical clustering, iterative clustering,
spectral analysis, etc.

The most important task concerning shape segmentation is how to define a part of
the surface. This is done by using various mesh properties or features such as area,
size or length, curvature, geodesic distances, normal directions, distance to the medial
axis, and shape diameter. In many segmentation algorithms [de Goes et al. 2008; Katz
and Tal 2003; Koschan 2003; Lee et al. 2005; Li and Peng 2020; Liu and Zhang 2004;
Wang et al. 2016; Zhang and Liu 2005] part analysis is carried out by using surface-
based computations. For instance, Zhang and Liu [2005] combined geodesic and
angular distances to define a metric that encodes distances between mesh faces, while
de Goes et al. [2008] used diffusion distance to propose a hierarchical segmentation
method for articulated bodies. The previous approaches are based on intrinsic metrics
on the surfaces and do not capture explicit volumetric information. Liu et al. [2009]
defined a volumetric part-aware metric combining the volume enclosed by the surface
with geodesic and angular distances. This metric is successfully applied in various
applications including mesh segmentation, shape registration, part-aware sampling,
and shape retrieval.

According to the underlying technique, many segmentation algorithms [de Goes
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et al. 2008; Katz et al. 2005; Liu et al. 2006; Liu and Zhang 2004, 2007; Zhang and
Liu 2005] belong to the class of the so-called spectral methods. In these algorithms,
an affinity or Laplacian matrix is constructed by using intrinsic metrics. The original
surface is projected into low-dimensional spaces, which are derived from the eigen-
vectors of the affinity or Laplacian matrix. As a consequence of the Polarization The-
orem [Brand and Huang 2003], higher-quality cut boundaries may be obtained from
these embeddings. For details about the spectral approach for mesh processing and
analysis, including mesh compression, correspondence, parameterization, segmenta-
tion, surface reconstruction, and remeshing, see the excellent survey by Zhang et al.
[2010].

1.1. Contributions

The main contribution of this paper is a new algorithm for segmentation of triangu-
lated surfaces based on the selection of a sample composed by k distinguished faces.
Given a metric to measure the distance between neighboring faces, the matrix T/*
encoding the affinity among all faces and the faces in the sample is computed. The
segmentation is performed by applying a classical clustering algorithm to the rows
of W*. The new method, called Farthest Sampling Segmentation (FSS), does not
require to compute the spectrum of the affinity matrix W or of any of its submatri-
ces. Hence, it is computationally cheaper than the segmentation algorithms based on
eigendecompositions. See Figure 2 for a graphical overview of the method.

From the theoretical point of view, our first result is the proof that given a sample
WP of the columns of W, the orthogonal projection of W in the space generated
by the columns of W is the same as the orthogonal projection of T in the space
generated by the largest eigenvectors of W, approximated using Nystrom’s method
for the same sample. This theoretical result clarifies the point of contact between our
method and the spectral approach and explains the success of FSS. Moreover, it is
shown that if the columns of W* correspond to the & farthest triangles in the selected
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Figure 2. Overview of the FSS algorithm. A small sample of k£ mesh faces (depicted in red)
is selected by means of farthest point sampling with respect to a suitable metric. Columns of
the n x k affinity matrix T * corresponding to the sample are computed. Mesh segmentation
is obtained clustering the k-dimensional rows of W.
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metric, then for increasing size k, pairs of faces that are close in the selected metric
project in pairs of rows of (order n x k) matrix W that are close as points in R,
and also pairs of faces that are far away in the selected metric project in pairs of rows
of W that are far away as points in R¥ (Lemma 1). This holds independently of the
choice of the first element of the sample (Lemma 2).

A wide experimentation illustrating the quantitative and qualitative performance
of the FSS method is also included. These experiments make apparent the robustness
and approximation power of the algorithm for small samples. Furthermore, a deter-
ministic criterion is proposed to choose a lower bound for the size k of the sample
that furnishes a good approximation to W.

1.2.  Paper Organization and Notation

In Section 2 we introduce the basic concepts that allow to define the similarity be-
tween any two triangles of the mesh. Two low- dimensional embeddings of the affin-
ity matrix are described in Section 3: the spectral and the statistical leverage. The
first theoretical result of the paper is included in that section. The embedding based
on the computation of the columns of the affinity matrix that corresponds to the far-
thest triangles is introduced in Section 4, where the coherence and stability of the
FSS method is shown and the associated algorithm is explained. Section 5 starts with
an experiment to prove that the embedding based on the farthest triangles provides
a good approximation of W. Moreover, several numerical experiments are included
showing the quantitative and qualitative performance of FSS. A comparison of FSS
with the spectral method is finally presented. The last section concludes the paper.

We use capital letters to denote matrices and the same lowercase letter to denote its
elements. For example the element ¢, j of the matrix A is denoted by a;;. Moreover,
A;. and A. ; represents the i-th row and the j-th column of matrix A respectively,
while A" denotes the Moore—Penrose inverse of matrix A. All mesh segmentations
shown in this work are computed without including any procedure to improve the
smoothness of the boundaries of the segments or their concavity, such as proposed by
Shapira et al. [2008] and Wang et al. [2014].

2. Distance and Affinity Matrices

Denoting by T the triangulation composed by a set F' = { f1, fo, ..., fn} of faces, the
segmentation problem consists in defining a partition of F'. In most of the segmenta-
tion algorithms, an important step to group the elements of F' consists in introducing
pairwise face distances and constructing an affinity matrix by using them. In the liter-
ature, several face distances have been considered [Gal et al. 2007; Katz and Tal 2003;
Liu et al. 2009; Shapira et al. 2008]. For instance, Katz and Tal [2003] defined the
distance between two adjacent faces as a convex combination of their geodesic and
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angular distances. Other metrics have been specially designed to capture parts of the
volume enclosed by the surface, such as the part-aware distance [Liu et al. 2009] and
the shape-diameter function (SDF) [Shapira et al. 2008]. The part-aware metric by
Liu et al. [2009] happens to be expensive, since its computation requires performing
two samplings of the triangular mesh by using ray-shooting. On the other hand, as
remarked by Liu et al. [2009], the SDF does not capture well the volumetric context.

2.1. Distance Matrix

Denote by f; and f; two triangles of 7" sharing an edge. Assume that we have already
defined a distance d;; between faces f; and f;. For instance d;; could be the angular
distance [Katz and Tal 2003] defined as (1 — (n;, n;)), where (n;, n;) denotes the
scalar product between the normalized normal vectors n; and n; to the triangles f;
and f;, respectively, and 7 is a weight introduced to reinforce the concavity of the
angles. Another distance very common in the literature is the geodesic distance [Katz
and Tal 2003], which in the case of neighboring triangles is defined as the length of the
shortest path between their barycenters b; and b;. Our third test distance, introduced
by Liu et al. [2009], is based on a scalar function defined on the triangulation, the
shape-diameter function [Shapira et al. 2008]. The SDF distance between any two
adjacent faces f; and f; of 71" is defined as | SDF(b;) — SDF(b;)|. Each of these test
distances captures different features of the triangulation.

The distance d;; between any pair of faces f; and f; is computed using the
weighted dual graph G4 of T'. The i-th node of G4 represents the triangle f; in T'
for ¢ = 1,...,n, and there is an edge between the i-th and the j-th nodes of G if the
faces f; and f; share an edge on the triangulation 7". The weight of the edge joining
neighboring faces f; and f; is defined as max{d;;,e}, where ¢ > 0 is very small.
The distance is extended to non-neighboring faces as the length of the shortest path
between their corresponding nodes in G4, which may be computed using Dijkstra’s
algorithm. Observe that the distance d;; satisfies the axioms of metric. We denote by
D = (dij), 1,7 = 1,...,n, the matrix of the distances between each pair of faces of
the triangulation.

2.2. Affinity Matrix

Given a suitable metric that allows to compute the pairwise distance between faces of
the triangulation, the affinity matrix W encodes the probability of each pair of faces
being part of the same cluster and can be considered as the adjacency matrix of the
weighted graph G4 previously introduced.

Assume that the distance d;; between any pair of faces f; and f; of the triangulated
surface has been already computed. Then the affinity w;; between faces f; and f;,
which are closer, should be large. In the literature it is customary to use a Gaussian
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kernel to define w;;, 4,7 = 1,...,n, as
wyj = e~ dii/(20%) (1)

where o = # > Ej d;j. Observe that 0 < w;; < landw;; = 1foralli =1,...,n.
Moreover, W = (wj;), i,j = 1,...,n, is a symmetric matrix. Denote by M the
diagonal matrix

M = diag(ms;), @)

where m;; = Z?:l Wsj.

Many papers in the literature deal with normalized versions of the affinity ma-
trix, which are called Laplacians in the more general context of clustering the data for
exploratory analysis [von Luxburg 2007]. For instance, the (nonsymmetric) affinity
matrix M 1T is used in spectral image segmentation [Shi and Malik 1997], while
the symmetric normalized affinity matrix Q = M ~/2W M~1/2 is used for data clus-
tering [Liu and Zhang 2004] and mesh segmentation [Ng et al. 2001]. In applications,
the affinity matrix W of order n is huge, therefore segmentation methods requiring
the computation of all matrix entries are very expensive. To overcome this problem,
the segmentation algorithm proposed in this paper computes only a few columns of
matrix W.

3. Low-Dimensional Embeddings for Clustering

In the geometric processing community, low-dimensional embeddings are frequently
used to transform the input data from its original domain to another domain. The main
purpose of these embeddings is to reduce the dimensionality of the problem, preserv-
ing the information of the original data in such a way that the solution of the new prob-
lem is cheaper and easier. The segmentation problem can also be considered as a clus-
tering problem, which is frequently solved by applying the k-means method [Lloyd
1982]. In this context, dimensionality reduction for k-means is strongly connected
with a low-rank approximation of the matrix containing the data to be clustered [Bout-
sidis et al. 2015]. In our problem, the matrix containing the information about “data
points” is the affinity matrix W. Each row of W represents the affinity between a
triangular face and the rest of the faces. Hence, a valid strategy to solve the segmen-
tation problem consists in computing a low-rank approximation of the affinity matrix
W and clustering its rows.

3.1. Spectral Approach

The most popular low-dimensional embeddings in the literature are the spectral ones,
which are constructed from a set of eigenvectors of a properly defined linear opera-
tor. They have been successfully applied in mesh segmentation [de Goes et al. 2008;
Liu et al. 2006; Liu and Zhang 2004, 2007] and also in other geometric processing
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applications, such as shape correspondence [Jain et al. 2007] and retrieval [Elad and
Kimmel 2003] and mesh parametrization [Gotsman 2003; Mullen et al. 2008].

From the theoretical point of view, spectral embeddings are supported by a clas-
sical linear algebra result, the Eckart—Young theorem [Eckart and Young 1936]. It
establishes that the best rank-k approximation in the Frobenius norm of a real, sym-
metric, and positive semi-definite matrix W of dimension n is the matrix

EF =UFUM)T, 3)

where U* is the matrix with columns VAU, VAU, ..., VAgug and uq, us, . .., U
are the eigenvectors of W corresponding to its largest eigenvalues Ay > Ay > ... >
k. It means that the following equality holds for the Frobenius norm of the error:

W —EF|p= min ||[W—-XX"|p. (4)
XecR" Xk
rank (X )<k
If we denote by U* the matrix with columns u1, us, . . . , ug, then U* = (AF)z U,
where A* is the order-k diagonal matrix with diagonal elements A, Aa, . . ., \,. More-

over, it is not difficult to prove that (U*)* = (U¥)T. Hence, the orthogonal projection
U*(U*)TW of W on the space generated by columns of U* satisfies

Uk(Uk)—‘rW — Uk:(Uk:)TW _ Uk(Ak:)(Uk)T
= (TFak)7) (ak) (T (ak)73)
= URU")T = E*.

The equality E¥ = UF(U*)* W means that the best rank-k approximation of W is
the projection of W on the space generated by the eigenvectors of W corresponding
to its largest eigenvalues.

Spectral clustering algorithms also rely on the Polarization Theorem [Brand and
Huang 2003], which states that as the dimensionality of the spectral embeddings de-
creases, the clusters in the data are better defined. In practical applications, it is
necessary to choose a value of k representing a good compromise between these two
apparently conflicting results. This value should be small enough to obtain a good
polarization of the embedding data, but at the same time large enough to reduce the
distortion of the proximity among the data due to the embedding.

Spectral methods of segmentation are in general expensive, since they require
the computation of eigenvalues and eigenvectors of the Laplacian matrix. In some
cases [Liu et al. 2006; Liu and Zhang 2004], the Laplacian matrix is obtained, in-
troducing a normalization of the affinity matrix. In other cases, it arises from a dis-
cretization of the Laplace—Beltrami operator [Reuter et al. 2009]. In the geometry
processing context the Laplacian used in segmentation is a dense and usually very
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large matrix. To face this problem, Liu et al. [2006] used Nystrom’s method, since it
only requires a small number of sampled rows of the affinity matrix and the solution
of a small-scale eigenvalue problem.

More precisely, a sample X of k mesh faces define a partition F' = X U ) of F.
Let px be the set of £ indices of the faces in the sample X" and py the set of n — k
indices of the faces in ). Denote P as the permutation matrix corresponding to the
vector p = (px,py). Then the permuted affinity matrix PW P has the following
structure:

A B

rPwpT =
BT ©

) &)

where A is the order-£ affinity matrix of the elements in X and B is the order-(k x
(n—k)) matrix of the cross-affinities between elements in X and ). The eigenvectors
of W corresponding to the k largest eigenvalues, i.e., the columns of U*, may be
approximated [Fowlkes et al. 2004; Liu et al. 2006] by the columns of the n X k
matrix P N*, with

U4 ] : (©6)

Nk =
BTUAAL

where A = UsA AUX is the spectral decomposition of A. The orthogonal projec-
tion F'¥ of W on the space generated by the columns of matrix P ' N* provided by
Nystrom’s method is given by

FF = (PTN®)(PTNF)TW. (7)

The accuracy of the eigenvectors computed by using Nystrém’s method strongly
depends on the selection of the k columns of W corresponding to sample X'. There-
fore, different schemes have been considered in the literature, for instance random
sampling, uniform sampling, max-min farthest point sampling, and greedy sampling
[Fowlkes et al. 2004; Kumar et al. 2012; Liu et al. 2006; Mahoney 2011; de Silva and
Tenenbaum 2004].

Proposition 1. Let W be a symmetric order-n matrix and p = (px,py) a permuta-
tion vector of indices 1,2, ... ,n, where px has size k. Let P be the order-n permuta-
tion matrix represented by vector p and W* the n x k matrix whose columns are the
columns of W with indices in px. Then, if W* has full rank, it holds that

(WE) (WhF = (PTN") (PTNF)Y, 8)
where N is given by Equation (6).

Proof. Since columns of W* are the columns of W with indices in py, from Equa-
tion (5) we get,

PWk = 9)

BT
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By the hypothesis W* has full rank, hence from Equation (9) it holds that A and A 4
are nonsingular. Moreover, from A = UxA AUX it follows that Uy = AUAA;G.
Hence, using Equation (6) and Equation (9), we get

AUAAY!
BTUsA,!

A
Nk = BT Ushy' = PWFULALL (10)

But columns of W* and W*U 4 are linearly independent, thus
(WFUAAZH T = AU (WF)*, (11)
Finally, from Equations (10) and (11), it holds that

(PTNR)(PTNR)® = (WHULAL)(WHFUAALY) T = (W) (W)

Remarks. From the previous result it holds that:

1. The orthogonal projection H* of TV on the space generated by the columns of
Wk given by
oY = wrkwh w (12)

coincides with the orthogonal projection F'* of W on the space generated by
the columns of matrix P N*, which is provided by Nystrém’s method.

2. Since H* = F*, the approximation to W provided by H* and the approxima-
tion F'¥ obtained by Nystrém’s approach have the same accuracy. This accuracy
depends on the selection of the k£ columns of W corresponding to sample X

3. If we associate the ¢-th face of 1" with the i-th row of W, then clustering the
rows of TV may be replaced by clustering either the rows of W* or the rows
of PTN*,

3.2. Statistical Leverage Approach

Mahoney [2011] proposed a method to select a sample of the columns of a matrix
W of dimension n in such a way that the space generated by the selected columns
provides a good approximation of W. Given k, with £ < n, the method assigns to
the j-th column of W a leverage or importance score 7; that measures the influence
of that column in the best rank-% approximation of W.

The use of the leverage scores for column subset selection dates back to 1972 [Jol-
liffe 1972]. However, the introduction of the randomized approach [Holodnak et al.
2015] has given essential theoretical support to the leverage scores in the role of re-
vealing important information hidden in the underlying matrix structure.
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More precisely, if v1, v, . . . , vy are the right singular vectors of W corresponding
to the largest singular values, the leverage 7; is defined as

]_ .
= Z(vi)Q, (13)

where vzj denotes the j-th component of v;. The normalization factor % is introduced
in Equation (13) to consider 7; as a probability associated to the j-th column of W.
By using that score as an importance sampling probability distribution, the algorithm
constructs an n X m matrix C, composed by m > k columns of W [Mahoney 2011].
With high probability, the selected columns are those that exert a large influence on
the best rank-k approximation of W. In our experiments in Section 5, we use a slight
modification of Mahoney’s algorithm to obtain a matrix C, which we denote by C*,
that is composed exactly by k columns. More precisely, if we arrange in decreasing
order the leverages m;, > m;, > ... > m;,, then the :—th column of matrix Ck is
the column j; of W, for¢ = 1,..., k. The orthogonal projection of W on the space
generated by the columns of C* is given by

GF =k (chHtw. (14)

4. Farthest Sampling Mesh Segmentation Method (FSS)

Computing distances from every node to a subset of nodes of a graph (landmarks
or reference objects) is a well-known method to efficiently provide estimates of the
actual distance. In this context, this distance information is also referred to as an em-
bedding. Landmarks have been used for graph measurements in many applications,
such as round-trip propagation, transmission delay, or social search in networks. The
selection of the optimal set of landmarks is an NP-hard problem [Kamousi et al. 2016;
Potamias et al. 2009], hence heuristic solutions should be used. The extensive exper-
imentation with several heuristics for the landmark selection on real-world massive
graphs presented by Potamias et al. [2009] indicates that a smart landmark selec-
tion strategy provides good approximations of the distances in comparison with ran-
dom landmark selection [Kleinberg et al. 2004]. The analysis of the stretch factor of
distance approximations, obtained with landmarks computed with the farthest point
sampling strategy, provides some evidence supporting the success of the farthest point
sampling as a landmark selection strategy in isometry-invariant shape processing [Ka-
mousi et al. 2016].

The previous ideas and the result and discussion at the end of Section 3.1 inspired
us to propose a mesh segmentation method based on the computation of a small sam-
ple of columns of the affinity matrix W. It is well known that the quality of the ap-
proximation to W obtained from the eigenvectors computed with Nystrém’s method
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strongly depends on the selection of the sample. Consequently, our segmentation
method FSS consists of the following steps: First we use the farthest point heuristic
to select a sample of the faces. Then we compute a matrix TW* encoding the affinity
between all faces and the faces in the sample. Finally, a clustering method is applied
to the rows of W*,

The rationality behind these steps is the following. A representative subset of the
columns of W must have maximal rank. Since the entries of the j-th column of W
are the affinity values between all faces of T" and the j-th face, the sample should
not include columns corresponding to faces that are very close between them. In this
sense, the farthest point heuristic is a good strategy to avoid redundancy in the sample.
On the other hand, if two faces f; and f; of T are close in the selected metric d, i.e.,
d;; is small, then the corresponding rows D; . and D; . of the full distance matrix D
are approximately equal, since according to the triangular inequality the difference
between the r-th components of D; . and of D . is bounded by d;; forr = 1,...,n.
Hence, due the continuity of the Gaussian kernel, the rows W; . and W . of the affinity
matrix W are also approximately equal. In other words, the proximity among rows
of W, and consequently between the faces of 7', is well reflected by the proximity of
the same rows of Wk,

4.1. Sampling Procedure

Our algorithm FSS is deterministic and greedy in the sense that at each iterative step,
it makes a decision about which column to add according to a rule that depends on
the already-selected columns. As mentioned before, the sample of W is derived from
a sample of columns of the distance matrix D. To obtain a good approximation of D,
it is enough to select a set X C I’ of distinguished faces that can be considered as
landmarks, in the sense that the distance between any pair of faces f; and f; can be
approximated in terms of the distance of f; (respectively f;) to the landmark faces.
The method iteratively computes the columns of a matrix X, which contains a
sample of k columns of the distance matrix ID. More precisely, in the first step we
choose randomly a value j; with 1 < j; < n and define the first column of matrix
X as the vector built up with the distances of all faces to the ji-th face, ;1 = d;j,,
¢t = 1,...,n. Then, we search the index jo of the face farthest from the j;-th face
and assign to the second column of X the vector of the distances of all faces to
the face jo. In general, in the step [, for £ > [ > 2, we have the [ — 1 indices

J1, 72, - - -, Ji—1 previously selected and a matrix X of order n x (I — 1) with columns
D. ;,D.,,...,D._j ,, which contains the distances of all faces f;, 7 = 1,...,n
to the faces fj,, fj,,..., fj,_,. In this step we look for the index j; of the face that
maximizes the minimal distance to the faces f;,, fj,,..., fj,_;:
; = argmax <4 min x; 15
J 1g§i§n {1§r§l1 ZT} ) ( )
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where z;, = d;j,,i=1,...,n,7 =1,...,1 — 1is the element of X in the position
(i,7), i.e, the distance between faces f; and f;,. Once we have j;, we compute the
[-th column of X as the vector of distances of all faces to the j;-th face.

The i-th row of X contains the coordinates of a point in R¥, which could be con-
sidered as a k-dimensional embedding of the point in R™ given by the ¢-th row of D
(which represents the distances of all faces to the face f;). Given k, by using the ma-
trix X we compute the matrix W* = (wfj) of order n X k, which is an approximation
of the submatrix of W composed by the k£ columns jy, ..., ji in the sample:

wh = e/ =1, 0, j=1,...,k (16)

where
1 n k
o) = ﬁzzxm (17)
=1 j=1

Finally, it remains to explain how we compute the size k of the sample. In this
sense, several options are possible. The simplest one is to define a priori the value of
k, for instance as the integer part of a prescribed percent of the total number of faces
n. In this case, the Sampling procedure is summarized in the procedure in Listing 1.

Another option for computing the size k of the sample is the following. A value
B > 0,1 > 1, strongly related to the selection of index j; in Equation (15) is intro-
duced, defining

06 := max { min :L'i’r}. (18)

1<i<n | 1<r<i

Recall that for all [ > 1, 8; > 0. Furthermore, from Equation (18) it is clear that the
sequence {f3;, 1 <1 < n} is monotonic decreasing with 3, = 0. In fact, while new
faces are included in the sample, the distance of the new face that is simultaneously
farthest away from all actual members of the sample decreases. If the sample contains

Procedure 1
/* Input */
triangulation T, sample size k

— Choose randomly an index j1 with 1 <751 <n
for [=1 to k

{

- Using Dijkstra, compute X.;=D.;

- Compute jit+1 = argmax, <;<, {mini<,<i @i}

}

/% Output: sampling distance matrix X #*/
return X

Listing 1. Sampling procedure, version 1.
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Procedure 2
/+ Input =/
triangulation T, >0

— Choose randomly an index j1 with 1 <51 <n

- Assign [+ 1

- Assign 6« 2¢

while {§ >¢ and [ <n}

{
- Using Dijkstra, compute X.;=D.
- Compute [; = maxi<i<n{Mmini<,<; Z;r} and jfi+1 = argmax,;,, {mini<r<; Tir}.
- Assign 6« % o
- Assign [+ [1+1.

}

/* Output: sampling distance matrix Xx/

return X

Listing 2. Sampling procedure, version 2.

all faces, i.e., if | = n, then matrix X is a permutation of the columns of the distance
matrix D, and for all ¢ = 1,...,n it holds that mini<,<, x;, = 0; thus we get
Bn = 0. Hence, the value of 5, may also be interpreted as a measure of the error
introduced when the “original” data in a n-dimensional space are substituted by their
k-dimensional embedding. Given an upper bound € > 0, the size k of the sample may
be computed as

k = min {l such that ﬁ < e} . (19)
2<I<n ﬂl

For 1 > ¢ > 0, the value of £ computed by using Equation (19) depends on ¢, and
it is usually much smaller than n. Pseudocode of the previous Sampling procedure is
included in Listing 2.

4.2. Coherence and Stability of FSS

Now we are ready to explain why FSS is coherent in the sense that clustering the rows
of W* happens to be consistent with clustering the rows of the full matrix 1. That
is very important, since it is well known that, in general, points far away may project
in very close points, giving rise to non-connected clusters. This is not the case in the
FSS embedding and, consequently, no artifacts appear in the segmentation process.
From now on we denote the farthest point (FP) sample of size k as the set of
indices j}? :={J1,72, - - -, jx } such that j; is randomly chosen and, for 2 <1 < k, j;
is the index of the face maximizing the minimal distance to faces ji, j2, ..., j;—1. To
J fé is associated the n x k matrix X, submatrix of D. W¥ is the n x k affinity matrix
corresponding to X, which is computed according to Equations (16) and (17).
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Lemma 1. Given a triangulation T and a selected metric d, for fixed initial face
index ji, let J )lg be the FP sample of size k. Then, there exists k* such that, if two
faces of T are far away (very close, respectively) in the metric d, then for all k > k*,
the corresponding rows of matrix W¥ are also far away (very close, respectively) as
points in R¥,

Proof. First we prove that for any sample, it holds that pairs of faces that are close in
the selected metric d project in pairs of rows of the associated order-(n x k) matrix
Wk that are close as points in R¥. Indeed, if two faces f; and fj of T' are close in
the selected metric d, i.e., if d;; is small, then the corresponding row vectors D; . and
Dj . of the full distance matrix D are approximately equal, since according to the
triangular inequality the difference between the r-th components of D;. and D; . is
bounded above by d;;, i.e.,

‘dir_djr| < dij for r = 1,...,77,.

Obviously, the same upper bound holds for any row vectors X; . and X;. sampled
from the n X k matrix X. Hence, pairs of faces that are close in the selected metric d
project in pairs of rows of the order-(n x k) matrix W that are close as points in R¥,
independently of the choice of sample.

Alternatively, assume that faces f; and f; of T are far away in the selected metric
d, i.e., d;j is large. Then for any € with d;; > € > 0, there exits k* such that 3 < 5
for all K > k*. Denote i* = arg minrej?;ﬁ d;r and j* = arg minrej);g dj,. From the
definition of 3y, it is clear that d;;+ < 3;, and dj;+ < Bj.

Assume that dj;+ < dj;«, then dj;« < dj;+. Moreover, by triangular inequality,

dji= + dig= = dj;.

From the previous inequalities we obtain that, for r € J. /{3 the maximum difference
between the r-th components of D; . and D . is bounded below by

max |dj, — dir| 2 |djis — diz=| = dji= — diz= > dji — 2dii= = dji — 20y, > dji — €.

redy
On the other hand, if d;;+ > d;;+, then proceeding in a similar way it holds that

Hl?])}g ‘djr — di,«| Z ‘djj* — dij*’ = dij* — djj* Z dj,‘ — dej* Z djl' — Q,Bk > dji — €.
r

X

Thus, for k& > k*, rows i and j of matrix W* are far away, i.e., pairs of faces that
are far away in the selected metric d project in pairs of rows of matrix TW* associated
with the FP sample 7 )’2 that are far away as points in R, O

Our experiments in the next section show that it is possible to choose a value of
k* in Lemma 1 such that £* is large enough to reduce the distortion of the affinity
among the data due to the embedding and small enough to obtain a good polarization.
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The first step of the Sampling procedure (see Listings 1 and 2) is to randomly
select face j;. Now we show that choosing at random different indices of the initial
triangle, the differences between the i-th and [-th rows of the corresponding affinity
matrices associated with the FP samples tend to be equal for increasing size k. Thus,
the segmentation result is stable with respect to the selection of the initial face j;.

Lemma 2. Let T be a triangulation, d a selected metric, and € > 0. Then, there exists
k* such that, for any pair j}? and 71; of FP samples of size k, k > k*, with different
initial faces j, and j, and associated affinity matrices W* and Wk, respectively, it
holds that

IWi = W = W - Wi | <e

for any pair of indices l,i € {1,2,...,n}.

Proof. Denote by 3; and f3), the 3 values in Equation (18) corresponding to J )’2 =

{j1,..., 7k} and 7’; = {G1,...,7x}. respectively. Set B, = max {8, B;}. Given
e > 0, if k is sufficiently large, we may assume that 8, < % Then, for1 < r <k, it
holds that d;;, < /), and dlj < B with 1 < [,7 < n. Hence,

| dij, —di5 | < B and |dyj, — d | < B
Thus, from the previous inequalities it follows for 1 < [, <nand 1 < r < k that

|dij, — dij.| = |d7 —diz || < |dij, —d;5 —dij, +d5 |

ij,

< |dij, —d;5 | +|dij, —d

§2,§k<5.

17,

Remarks.

1. If we choose two different initial faces, we obtain in general two different far-
thest point samples of size k. These samples give rise to different affinity matri-
ces W* and W". But for k sufficiently large, the differences between any two
rows of TW* and the same rows of 7" tend to be equal. Since the FSS method
constructs the segmentation clustering the rows of W* and Wk, it follows from
Lemma 2 that for, k sufficiently large, the segmentations obtained starting with
different initial faces are the same.

2. In Section 5.4 we show that, choosing a fixed initial triangle j;, most of the
segmentation results obtained with FP samples of relatively small size k are
very close to the segmentation obtained from the full affinity matrix.
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Procedure FSS
/* Input =/
triangulation T, number of clusters n.

- Call to the Sampling procedure to compute the sampling distance
matrix X.
- Assign k as the number of columns of X.
- Compute the normalization factor ox = =% > i, Zle Tij
for 1=1 to n
{
for =1 to k
{- Compute w}; = e/ (207)
- Compute normW; = ||(wf, -, wk)|2
for j=1 to k
{- Compute quj :wfj/normWi}
}

- Apply k-means to the n rows of W= (wk

ij) to obtain n. clusters.
/+ Construct segmentation vector s */
for 1=1 to n
{— Assign to s; + the index of the cluster of the face f;}
/% Output: segmentation vector s */

return 8= (S1,...,5n)

Listing 3. FSS algorithm.

4.3. Pseudocode of the FSS Method

As previously pointed out, the FSS method first computes a small sample W* of
columns of WW. Based on the identification of the rows of W with the faces of T', the
segmentation of the mesh is obtained clustering the rows of W*. Listing 3 includes
pseudocode of the FSS algorithm, which receives as input the triangulation 7" and the
number 7, of desired clusters. The number k& of columns of the affinity matrix to be
computed depends on the sampling procedure. In any case, it is assumed that k < n.
The FSS algorithm calls to the Sampling procedure, which returns the matrix X . This
is the main step of FSS. The [-th column of X is the vector of distances of all faces
to the j;-th face in the selected sample. Observe that the FSS algorithm normalizes
the rows of W* (as suggested by Liu and Zhang [2004]), hence these rows may be
interpreted as points on the (k — 1)-dimensional sphere S¥~1.

For the sake of simplicity, the segmentation is carried out by applying the classic
k-means clustering algorithm to these points. Recall that the FSS method is not tied
to using any specific clustering algorithm. Since the result of k-means depends on the
initial seeding, in our implementation we have used several replications with random
starting points for the seeds. The final segmentation is defined by the best solution
obtained with this strategy.
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Compared with other algorithms reported in the literature, the new algorithm has
several advantages. First, it only computes an n x k matrix W¥. On the other hand,
unlike previous works [Liu et al. 2006; Liu and Zhang 2004], the FSS algorithm does
not require computing the spectrum of W or the spectrum of any submatrix of W.

The construction of matrix W requires the computation of

(n—1)+(n—2)+...+(n—k):S(Qn—k—l):O(lm)

distances between faces. In comparison, obtaining the full affinity matrix W is much
more expensive and would require the computation of

n—1)+Mn-2)+....42+1=1/2n(n—1) = O(n?)

distances between faces.

The total computational cost C; of the FSS algorithm is the sum of the cost C},
of computing the approximation W¥ of the affinity matrix W plus the cost C of
clustering the rows of W in n, clusters. If m is the cost of computing the distance
d between two faces of a given triangulation with n faces (this cost strongly depends
of the underlying metric: for instance, if the metric is the geodesic or the angular
metric, then m = O(nlogn)), then Cx, = O(knm). Since k, n., and the number n;
of Lloyd iterations [Lloyd 1982] are bounded, it holds that Cs = O(n;n.kn). Thus,
if only £ < n columns of the affinity matrix W are computed, then the total cost C}
is dominated by Cj, i.e., C; = O(knm). In the numerical experiments of the next
section, we show that the embedding based on the farthest triangle provides a good
approximation of W and therefore it is useful to perform the segmentation.

5. Numerical Experiments

To prove the performance of the mesh segmentation algorithm proposed in this paper,
we wrote three main codes. The first code is the basis for the experiment developed in
Section 5.1, which illustrates the advantages and limitations of the low-dimensional
embeddings previously considered. This code is also used to compute the 3 curve
in Section 5.5. The second code is an implementation of the FSS algorithm whose
results are reported in Sections 5.2, 5.3, and 5.4. The last code is an implementation
of the segmentation method proposed by Liu et al. [2006], which applies Nystrom’s
method to approximate the spectral embeddings of faces of the triangulation. This
code is the computational basis of the comparison developed in Section 5.6 between
the performance of FSS and the spectral segmentation method by Liu et al. [2006].
We recall that the mesh segmentations shown in this section are computed without
including any procedure to improve the quality (smoothness of the boundaries of the
segments or their concavity), as done in other works [Shapira et al. 2008; Wang et al.
2014].
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5.1. Low-Dimensional Embeddings

As we previously mentioned, a valid strategy to solve the segmentation problem is
based on computing a low-rank approximation of the affinity matrix W. In the fol-
lowing experiment we compare the approximation power of the low-dimensional em-
beddings described in Sections 3 and 4. Given a mesh with n triangles, we compute
the affinity matrix W of order n given by Equation (1). Furthermore, the projection
AF of W on different spaces for k = 1,...,n is also computed. More precisely, given
a value of k, four projections are computed, each one obtained when AF is the matrix
E¥ given by Equation (3), the matrix I'* given by Equation (7), the matrix G* given
by Equation (14), and the matrix H* given by Equation (12).
For each approximation A*, the absolute error in Frobenius norm,

erToryps = || — Ak||F, (20)

is computed and compared to the error in Equation (4) of the best approximation E*.

Figures 3 and 4 show the results obtained for two 3D triangulations representing
an octopus (see Figure 10) and a hand (see Figure 11), models 125.off and 200.0ff,
respectively, of the Princeton Segmentation Benchmark [Chen et al. 2009]. In these
examples, the distance matrix D was computed using the geodesic metric to measure
the distance between triangles. In Figure 3 we plot the absolute error in Equation (20)
as a function of k. The red curve corresponds to the error in Equation (20) obtained
when AF is the matrix E* of the best rank-k approximation of T¥. Similarly, the black
and blue curves are computed with A¥ = G*, H*, respectively. Since H* = F*
(see Proposition 1), the curve corresponding to Nystrom’s projection agrees with the
blue curve corresponding to the embedding proposed in this paper. Observe that this
curve is the closest to the curve obtained for the embedding corresponding to the best
approximation of the affinity matrix.

zoom of gray area zoom of gray area

—— Best rank

600 4

100 4

absolute error
absolute error

200 4

10 4
"’“'k ] )&
01

0 200 100 0 50 100 150 200 0 200 100 0 50 100 150 200
k — sample size k — sample size

Octopus model Hand model

Figure 3. Absolute errors in Equation (20) computed for increasing values of k using different
approximations A* of the affinity matrix 1. Left: Octopus model with 2682 faces. Right: Hand
model with 3026 faces.
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Figure 4. The curves log(1 + ~yx) and log(1 + S%), both plotted as functions of k for k =
1,...,500. Left: The curves for the octopus model with 2682 faces. Right: The curves for the
hand model with 3026 faces.

Figure 4 shows the curves log(1 + ~x) and log(1 + %), where 74 is the k-th
singular value of W (in descending order) and Bj is given by Equation (18) (with
[ = k). These curves correspond to the octopus and the hand models and all decrease
very fast.

In general, in all our experiments with several triangulations we observed the
following:

1. The absolute error curves show that the matrices H* and F'* (recall that H* =
F*) provide the approximation to W closest to the optimal E* for k < n/2. In
practice, we are interested in a good rank-k approximation of W with k < n.
Hence, the embedding corresponding to the farthest point sampling provides
the better approximation with the lower computational cost. It explains exper-
imentally why the mesh segmentation algorithm FSS compares favorably to
other methods reported in the literature, which are based on the spectrum of W
and happen to be more expensive.

2. The method proposed in this paper cannot be considered as a random method,
since except the first column of the sample, the rest of the columns are selected
deterministically. However, one may think of 1 — /3;/51, [ > 1 as the condi-
tional probability of selecting the j;-th column of W given that the columns
J1,---,J1—1 have been previously selected. In this context, our farthest point
sampling scheme may be considered as an algorithm to select the k& columns
with highest conditional probability (see Section 5.4 for more details).

5.2. Mesh Segmentation Qualitative Performance

In this section we show the performance of our mesh segmentation algorithm FSS
with several 3D triangulation models. In the experiments reported here and in the
next section, the k-means++ algorithm [Arthur and Vassilvitskii 2007] is applied
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Figure 5. Left: Segmentation with the angular distance of the cube model. The clusters are
obtained computing 1% of the 10,800 columns of . Center: Segmentation of the eight model
with the geodesic distance obtained computing 2% of the 1536 columns of W. Right: Pliers
model segmentation with the SDF distance obtained computing 5% of the 8970 columns of V.

to the normalized rows of the rectangular matrix W*, composed by the k selected
columns of 7. These rows are considered as points in S¥~!. To measure the distance
between two vectors, we use the cosine distance. Several replicates of the k-means++
algorithm are applied, and for each replicate the seeds of the n. clusters are selected
randomly. The final segmentation is defined by the best solution obtained with this
strategy, which typically results in a global minimum of the sum of point-to-centroid
distances. In general, the FSS algorithm works very fast since in all segmentations k
is at most 10% of the total number of faces. Our goal here is just to evaluate visually
the quality of the segmentations produced by the algorithm.

The first example that we considered is the model of a cube defined by a trian-
gulation with 10,800 faces. This model is ideal to check how the algorithm works
when the distance between triangles is measured in terms of the angular distance. To
segment the model, we computed only 1% of the columns of the affinity matrix W.
Figure 5 (left) shows that the results are excellent, since the faces of the cube corre-
spond exactly with the six clusters produced by the automatic segmentation. In the
second example, we use the geodesic distance between triangles to define the affinity
matrix W of the eight model. In Figure 5 (center) we show the segmentation in two
clusters of the model, obtained computing only 2% of the columns of TW. Observe
that each cluster agrees approximately with one handle of the eight. In our third ex-
ample, we use the SDF distance to segment the pliers model into five clusters. In
Figure 5 (right) we show the results obtained computing 5% of the columns of . As
in the previous examples, the clusters are natural partitions of the model.

In our next examples we use a product metric to compute the distance between
neighboring triangles. More precisely, if the faces f; and f; share an edge of the tri-
angulation, then the product distance d;; between them is defined as d;; := d7;df,;,
where dfj and dj; are the geodesic and angular distances between fi and f;, respec-
tively. As usual, the distance between nonadjacent faces is defined as the length of
the shortest path in the dual graph. Figure 6 (left) shows the segmentation in eight

159


http://jcgt.org

Journal of Computer Graphics Techniques Vol. 14, No. 1, 2025
Farthest Sampling Segmentation of Triangulated Surfaces http://jcgt.org

Figure 6. Front and back views of segmentations obtained using the product of geodesic
and angular distances as the metric. Left: Bunny model segmented using 10% of the 3860
columns of W. Right: Hand model segmented using 1% of the 3000 columns of W

clusters of the bunny model. This result was obtained computing 10% of the total
number of columns of the affinity matrix WW. Observe that the segmentation produced
by the product distance distinguishes well not only the big ears but also the small tail.
The hand model with 3000 faces is more challenging. As we observe in Figure 6
(right), there is some leakage in the clusters corresponding to the fingers, even though
this leakage is substantially smaller than the one obtained by Liu and Zhang [2004]
for the same model. Moreover, the palm and the back of the hand belong to different
clusters since the combined metric is not enough to capture all the volumetric infor-
mation. These limitations could be overcome if we include in the definition of the
combined metric a part-aware distance [Liu et al. 2009].

5.3. Mesh Segmentation Quantitative Performance

In this section we study the behavior of our mesh segmentation algorithm FSS through
several examples of the Princeton Segmentation Benchmark [Chen et al. 2009] for
evaluation of 3D mesh segmentation algorithms. This benchmark comprises a data set
with 380 surface meshes of 19 different object categories. It also provides a ground-
truth corpus of 4300 human segmentation.

In the next examples we observe that the algorithm proposed in this paper, based
on the computation of few columns of the affinity matrix, produces segmentations that
compare to the results obtained using the full affinity matrix. Recall that it doesn’t
mean that the segmentation obtained with few columns of the affinity matrix W is
always good, but that it is as good as the one obtained computing all columns of W. In
other words, if we select carefully which columns of W are computed, then the quality
of the results essentially depends on how good the selected metric reflects the features
of the triangulation. In our experiments we compute the distance between triangles
using several metrics: the geodesic distance, the angular distance, the product of them,
and the SDF distance [Shapira et al. 2008].

Usually, the quantitative evaluation of a segmentation algorithm is done by com-
paring the automatic segmentation with one or more reference segmentations of the
ground-truth corpus. In the literature one can find several metrics to evaluate quantita-
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Figure 7. Top: Segmentations obtained computing few columns of the matrix /. Bottom:
Ground-truth segmentations. Left: Segmentation of the sunglasses based on geodesic dis-
tance and obtained computing 2% of the 8324 columns of W. Center: Segmentation of the
octopus based on the angular distance and obtained computing 1% of the 11,888 columns of
W. Right: Segmentation of the bird based on the SDF distance and obtained computing 1%
of the 6312 columns of W.

tively the similarity between two segmentations of a triangulated surface [Benhabiles
et al. 2010; Chen et al. 2009]. In this section we employ two different non-parametric
measures: the Jaccard index JI [Fowlkes and Mallows 1983] and the Rand index
RI [Rand 1971]. The segmentation of a mesh with n triangles may be described by
a vector s = (S1,...,5p), where s; is the index of the cluster to which the j-th tri-
angle belongs. Given two segmentations s, and s, of the same mesh, we denote by
JI(Sq,sp) and RI(sg, sp) the similarity between them according to the Jaccard and
Rand indexes, respectively. For both indexes it holds that 0 < JI(s,,s5) < 1 and
0 < RI(Sq,sp) < 1, where the value 1 corresponds to the maximal similarity, i.e.,
JI(3q,8p) = 1 or RI(s,,sy) = 1 means that segmentations s, and s are identical.
In the experiments we compute Jaccard and Rand distances between s, and s; given
by dj(sa,8p) ;=1 — JI(8q,sp) and dr(sq, sp) := 1 — RI(sq, Sp), respectively.

In Figure 7 we show the results obtained for three models of the Princeton Seg-
mentation Benchmark: the sunglasses (model 42), the octopus (model 121), and the
bird (model 243).

For all models, Rand and Jaccard distances are computed comparing the auto-
matic segmentation (top row) with the ground-truth segmentation (bottom row). Ta-
ble 1 shows the values of the Rand and Jaccard distances as well as the percent of
columns of the affinity matrix used to obtain the automatic segmentation and the met-
ric employed for computing the distance between triangles. In these examples a low
percent of columns provides good segmentations.

In Figure 8 we illustrate that the quality of the automatic segmentation with few
columns of W strongly depends on the capability of the selected metric to capture
the features of the mesh. In this example we show that even if we compute the full
affinity matrix W, the resulting automatic segmentation is far away from the ground-
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Model Metric % Dm&
Rand Jaccard
Sunglasses Geodesic 2 0.062 0.161
Octopus Angular 1 0.052 0.100
Bird SDF 1 0.048 0.295

Table 1. Rand and Jaccard distances (dr and d j, respectively) between the automatic seg-
mentation and the ground-truth segmentation.

Figure 8. Three segmentations of a fish (model 225 of the Princeton Segmentation Bench-
mark). Left and center: Segmentations based on the geodesic distance obtained using
0.5% and 100% of the 12,148 faces. The Rand and Jaccard distances between them are
dr = 0.010 and d; = 0.064, respectively. Right: Ground-truth segmentation. The Rand and
Jaccard distances between the segmentation obtained computing all the columns of W and
the ground-truth segmentation are dg = 0.415 and d; = 0.742, respectively.

truth segmentation, as shown by the values of di and d y between these segmentations
(dr = 0.415, dj = 0.742). Conversely, the automatic segmentations obtained com-
puting 0.5% and 100% of the columns of W are very similar, since the values of dr
and dy between them are small (dg = 0.010, d; = 0.064). Hence, the segmentation
with few columns is also not good in comparison with the ground-truth segmentation.
Finally, in this example we also observe that the body of the fish is subdivided into
clusters with similar areas. As Chen et al. [2009] pointed out, this behavior is typical
of segmentations based on the k-means algorithm.

5.4. Quality of Segmentations: A Different Way of Measuring

In the experiments of this section we use a different approach to measure the qual-
ity of the segmentation. Instead of comparing the automatic segmentation, obtained
computing k columns of the affinity matrix, with the ground truth of the corpus [Chen
et al. 2009], we compare it with the segmentation obtained using all columns of the
affinity matrix. In our opinion, this comparison is fairer, since the simple metrics
(geodesic, angular, and SDF distances) that we have used to compute the distance and
affinity matrices are not always enough to produce good segmentations. Hence, the
comparison of the automatic segmentations with ground-truth corpus segmentations
does not help in the sense of proving that the results with few well-selected columns
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Figure 9. Relative frequency histograms of the Rand distance values, dr, between the seg-
mentations obtained with the full matrix W and the segmentation obtained with the same
metric for k£ columns of W, with k equal to 0.5%, 1%, 2%, 5%, 10%, and 25% of n. From left
to right: Geodesic, angular, and SDF metric.

of the affinity matrix are of quality quite similar to the results obtained computing the
full affinity matrix.

Applying our segmentation method, 18 meshes of the Princeton Segmentation
Benchmark [Chen et al. 2009] are segmented using k columns of the affinity matrix
W, where k = 0.5%, 1%, 2%, 5%, 10% and 25% of the total number n of faces. The
Rand distance dr between the segmentations obtained for k columns and the seg-
mentation obtained with the same distance for the full matrix W is computed. Three
different metrics are considered: the geodesic, angular, and SDF metrics. For each
of these metrics, Figure 9 shows the histogram of the relative frequency of the Rand
distance values between the segmentations obtained for k& columns and the segmen-
tation obtained with the same metric for the full matrix W. This experiment shows
that, with high probability, the segmentations with a small number of columns % are
very close to the corresponding segmentation obtained for the full matrix W.

5.5. The 3 Curve

The graph of gj, from Equation (18) as a function of k£ has an L shape, similar to the
singular values curve, which decreases very fast for small values of k; see Figure 4.
This suggests that the 5 curve could be used to propose a lower bound for the size
k of the sample that furnishes a projection H* providing a good approximation to
W. The top row of Figure 10 shows the curve (k, 8;/f1), for k = 1,..., kmax, for
three models of the Princeton Segmentation Benchmark: hand (model 185.off with
kmax = 497), bearing (model 341.off with k. = 66), and octopus (model 125.off
with kynax = 187). We consider different distances: geodesic for the hand model,
angular for the bearing model, and SDF for the octopus model. Observe that these
curves decrease very fast for small values of k£ and tend slowly to 0 when k goes to n.

For several values of k, Table 2 shows the Rand and Jaccard distances between
the automatic segmentation and the ground-truth segmentation of the Princeton Seg-
mentation Benchmark. The smallest number of columns for which the slope of the 5
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Figure 10. Top: Normalized /3 /51 curve. Bottom: Segmentation of the models based on
Wk Different distances are used: geodesic for the hand (left), angular for the bearing (cen-
ter), and SDF for the octopus (right).

curve may be considered as very small are marked with x. Observe that for any fixed
model and all considered values of &, the values of the Rand and Jaccard distances be-
tween the automatic segmentation and the ground-truth segmentation are very similar.
In the bottom row of Figure 10, the segmentations corresponding to k* are shown.

Model Metric k m
Rand Jaccard
Hand 49* 0124  0.303
(4974 faces) Geodesic 497 0.124  0.303
124 0.123 0.302
Bearin 16*  0.033  0.452
(3322 éces) Angular 66 0.033 0.452
166  0.028 0.452
Octopus 53*  0.043  0.105
SDF 187  0.040 0.100

(2682 faces)

321 0.040 0.099

Table 2. Rand and Jaccard distances between the proposed automatic segmentation and
the ground-truth segmentation. The automatic segmentation was obtained using the metric
indicated in the second column and computing the number of columns of the affinity matrix
indicated in the third column.

164


http://jcgt.org

Journal of Computer Graphics Techniques Vol. 14, No. 1, 2025
Farthest Sampling Segmentation of Triangulated Surfaces http://jcgt.org

5.6. Comparing Our Method with the Spectral Approach

Since the FSS method proposed in this paper has some points of contact with the
one introduced by Liu and Zhang [2004] and later improved by Liu et al. [2006],
in this section we compare the segmentations obtained with both approaches. The
later one applies Nystrom’s method to approximate the spectral embeddings of faces
of the triangulation. To avoid the expensive computation of the normalized matrix
Q = M~'Y2WM~1/2, with M given by Equation (2), and its largest eigenvectors,
Nystrom’s method computes approximately the largest eigenvectors of (), from a
small sample of its rows (or columns) and the solution of a small-scale eigenvalue
problem (see Section 3.1). The final step consists in applying k-means to the rows of
the matrix of eigenvectors of (). The selection of the sample has a strong influence on
the accuracy of the eigenvectors.

No comments on the recommended relationship between the number of clusters
and the number of eigenvectors are included by Liu et al. [2006]. In the numerical
experiments reported here, the results with the spectral method are obtained setting
the number of eigenvectors equal to the number of clusters, as it is customary in
spectral segmentation [von Luxburg 2007]. Furthermore, the same sample of max-
min farthest faces is used to select the columns of W to be computed by our FSS
method and also for the Nystrom approximation of the largest eigenvectors of W.
Moreover, as suggested by Fowlkes et al. [2004], Nystrom-approximated eigenvectors
of () are orthogonalized before applying k-means clustering.

Figure 11 shows the segmentations based on the SDF distance of several mod-
els, using the spectral method with Nystrom approximation and using FSS. Table 3
shows the values of the Rand and Jaccard distances between the corresponding seg-
mentations. In general we observe that even when the segmentations are different, the
quality of them is similar. The Rand distances between segmentations are very small
in all cases, but the Jaccard distances are larger, reflecting better the visual differences.

In our last example we show an unexpected artifact that we have observed. Some-
times the spectral segmentation obtained using Nystrom approximation produces non-
connected clusters. In contrast, our segmentation approach using the same sample of
columns of W always produces connected clusters (recall Lemma 1). In Figure 12
(left) we show the spectral segmentation of the woman model obtained with the nor-
malized matrix (). The center and right images of this figure show respectively the
spectral segmentation with Nystrom approximation and with the method proposed
in this paper, both using 5% of the columns of W corresponding to the farthest tri-
angles in the SDF distance. The described artifact becomes evident in the spectral
segmentation with Nystrom approximation.
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Figure 11. Segmentations based on the SDF distance. Top: Spectral segmentations with
Nystrém approximation; the number of eigenvectors is equal to the number of clusters. Bottom:
Segmentations obtained with our FSS method. The sample of columns of the affinity matrix is
the same in both approaches: 0.5% of n for the hand (left), 25% of n for dog (center), and 5%
of n for fawn (right).

Di
Model % 1stance

Rand Jaccard

Hand 0.5 0.054 0.229
Dog 25 0.082 0.406
Fawn 5 0.084 0.397

Table 3. Rand and Jaccard distances between our segmentation and the segmentation pro-
duced by the spectral approach using Nystrom approximation. The sample of columns of W
is the same for both methods. The second column of the table shows the size of the sample
that is the indicated percent of the total number of triangles.

Figure 12. Left: Spectral segmentation computing all columns of the affinity matrix W. Center:
Spectral segmentation with Nystrém approximation computing 5% of the columns of . Right:
Our segmentation based in the same sample of columns of .
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6. Conclusions and Future Work

6.1. Conclusions

We have proposed a segmentation method for triangulated surfaces that only depends
on a metric to quantify the distance between triangles and on the selection of a sample
of few triangles. The proposed method computes the weighted dual graph of the
triangulation with weights equal to the distances between neighboring triangles. The
k farthest triangles in the chosen metric are used to compute a rectangular affinity
matrix W of order n x k, where the number & of columns is much smaller than the
total number of triangles n. Rows of W* encode the similarity between all triangles
and the k triangles of the sample. Thus, clustering the rows of W* happens to be
consistent with the results of clustering the rows of the full affinity matrix W and no
artifact appears. Hence, a valid strategy to solve the segmentation problem consists
in clustering the rows of W* by using, for instance, the k-means algorithm.

From the theoretical point of view, the problem of reducing the dimensionality
for clustering is strongly connected with the low-rank approximation of the matrix
containing the data to be clustered, which in our context is the affinity matrix W. In
this sense, we have proved that for any sample of k indexes, the rank-k approximation
of W obtained projecting it on the space generated by the columns of W with indexes
in the sample, coincides with the rank-%k approximation obtained projecting W on the
space generated by its approximated eigenvectors, computed by Nystrom’s method
with the same sample of columns of W. Moreover, it is shown that if the columns of
W* correspond to the k farthest triangles in the selected metric, then the proximity
relationship among the rows of W* tends to faithfully reflect the proximity among
the corresponding rows of W.

In practice, our experiments have confirmed that this occurs even for relatively
small k, resulting in a low computational cost for our method. Multiple experiments
with a large variety of 3D triangular meshes were performed, and they have shown
that the segmentations obtained when £ is less than 10% of n are as good as those
obtained from clustering the rows of the full matrix W. We have also observed that
the quality of the results, objectively measured in terms of Rand and Jaccard distances
between the automatic and the ground-truth segmentations, depends strongly on the
capability of the selected metric of capturing the geometrical features of the mesh.
Our experiments with geodesic, angular, and SDF distances show that none is enough
to produce good segmentations in all cases. A combination of two or more metrics
usually leads to better results.

Compared to other segmentation methods considered in the literature, the seg-
mentation method proposed in this paper has several advantages. First, it does not
depend on parameters that must be tuned by hand. Second, it is very flexible since
it can handle any metric to define the distance between triangles. Finally, it is very
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cheap, with a computational cost of O(knm), where m is the cost of computing the
distance between two faces of the triangulation. In this sense, the proposed method is
cheaper than spectral segmentation methods, which in the best case (when Nystrom
approximation is used) compute additionally the eigenvectors of an order-k£ matrix,
with an extra cost of O((n — k)k?) + O(k3) operations.

6.2. Future Work

In the present work, we intentionally focus on simple single segmentation fields on
3D meshes, and the clustering is obtained by applying a well-known clustering al-
gorithm, k-means++, in order to achieve straightforwardly a fair comparison of our
segmentation method with the spectral method. Nevertheless, the FSS method may
be extended to more complicated scenarios, where several attributes are combined
in a single segmentation field [Liu et al. 2009; Wang et al. 2014], or where several
multi-view clustering methods have been proposed to integrate without supervision
multiple information from the data [Cai et al. 2013; Huang et al. 2012]. Therefore,
in the future, we plan to investigate the advantages of replacing Nystrdom’s method
with ours, in order to propose more efficient algorithms in terms of computational
and memory complexity as well as to obtain segmentations without artifacts (com-
pare, for instance, to existing works on the subject [Elgohary et al. 2014; Yang et al.
2012)).

It is worth mentioning that the basic ideas of our FSS method—to select a small
subset of farthest faces as landmarks and to compute the distances from each node in
the graph to those landmarks—could be straightforwardly used in other segmentation
or clustering problems, such as the segmentation of digital images [Miao and Chen
2016] or the optimization of surface quality in 3D printing [Li and Peng 2020; Wang
et al. 2016]. Furthermore, the novel theoretical results and the experiments with the
weighted graphs of surface triangulations presented in this work strongly suggest that
FSS, complemented with our deterministic criterion to choose the sample size k, is
a good candidate for the selection of scalable landmarks strategies for shortest-path
computation in large networks [Potamias et al. 2009].
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